Parameter Estimation of Nonlinear Muskingum Models Using Nelder-Mead Simplex Algorithm

نویسنده

  • Reza Barati
چکیده

The linear form of the Muskingum model has been widely applied to river flood routing. However, a nonlinear relationship between weighted-flow and storage volume exists in most rivers, making the use of the linear Muskingum model inappropriate. On the other hand, the application of the nonlinear Muskingum model suffers from hydrologic parameters estimation. The current study aims at presenting the objective approach of the Nelder-Mead simplex (NMS) algorithm for the purpose of estimating the parameters of the nonlinear Muskingum model. The performance of this algorithm is compared with other reported parameter estimation techniques together with a historical example. Results of the implementation of this procedure indicate that the NMS algorithm is efficient for the estimating parameters of the nonlinear Muskingum models. This algorithm is easy to be programmed, and it is quite efficient for finding an optimal solution very quickly. Although this technique requires an initial guess for the parameter estimation, results of the sensitivity analysis of the initial parameter values showed that in 84.8% of the cases, the optimum or near-optimum results are achieved. DOI: 10.1061/(ASCE)HE .1943-5584.0000379. © 2011 American Society of Civil Engineers. CE Database subject headings: Floods; Routing; Hydrologic models; Optimization; Algorithms. Author keywords: Flood routing; Hydrologic models; Optimization; Algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A HYBRID MODIFIED GENETIC-NELDER MEAD SIMPLEX ALGORITHM FOR LARGE-SCALE TRUSS OPTIMIZATION

In this paper a hybrid algorithm based on exploration power of the Genetic algorithms and exploitation capability of Nelder Mead simplex is presented for global optimization of multi-variable functions. Some modifications are imposed on genetic algorithm to improve its capability and efficiency while being hybridized with Simplex method. Benchmark test examples of structural optimization with a...

متن کامل

A Downhill Simplex Algorithm for Estimating Morphological Degradation Model Parameters Tapas Kanungo and Qigong Zheng A Downhill Simplex Algorithm for Estimating Morphological Degradation Model Parameters

Noise models are crucial for designing image restoration algorithms, generating synthetic training data, and predicting algorithm performance. However, to accomplish any of these tasks, an estimate of the degradation model parameters is essential. In this paper we describe a parameter estimation algorithm for a morphological, binary image degradation model. The inputs to the estimation algorith...

متن کامل

Parameter Identification of Wiener Model with Discontinuous Nonlinearities Using Hybrid Simplex Search and Particle Swarm Optimization

Yinggan Tang, Leijie Qiao, Xinping Guan Abstract This paper deals with the parameter identification of Wiener model with discontinuous nonlinear. The parameter identification problem is converted to an optimal problem with a suitable objective function. A hybrid optimal method, which integrates the Nelder-Mead simplex search and particle swarm optimization (NM-PSO), is used to optimize the obje...

متن کامل

Parameter estimation for a phenomenological model of the cardiac action potential

The action potential (AP) of a cardiac cell is made up of a complex balance of ionic currents which flow across the cell membrane in response to electrical excitation of the cell. Mathematical models of the action potential have grown increasingly complex and include many subcellular phenomena such as calcium handling and complex Markov formulations of the gating dynamics of the ion channels. T...

متن کامل

From Evolutionary Operation to Parallel Direct Search: Pattern Search Algorithms for Numerical Optimization

G.E.P. Box’s seminal suggestions for Evolutionary Operation led other statisticians to propose algorithms for numerical optimization that rely exclusively on the direct comparison of function values. These contributions culminated in the development of the widely used simplex algorithm of Nelder and Mead. Recent examination of these popular methods by the numerical optimization community has pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011